About me

Basic Discovery Research Scientist - preclinical models, cohort studies Telethon Kids Institute, Wal Yan Respiratory Research Centre

Immune System-

Respiratory homeostatic regulation Disease pathogenesis - asthma, respiratory virus infection Early life disease risk and prevention

Let's explore an overview of emerging strategies for prevention of infection

Immune system- function

 Balance of promoting pro-inflammatory effector mechanism and antimicrobial immunity with parallel anti-inflammatory/immunoregulatory mechanisms

Underlying chronic conditions Early/later life Pregnancy

Healthy lungs for every child, for life

Immune system- modulation

Immune system function Innate and Adaptive

Microorganism recognition through germ line encoded expression of various Pathogen Recognition Receptors PRR

	Innate Non-specific	Adaptive specific
Major cell types	Epithelial, dendritic, NK, monocytes, macrophages, neutrophils, ILC	T and B cells
Pathogen detection	Germline encoded receptors (TLR, NLR, RLR etc)	Somatic gene rearrangements- diverse receptors
Response specificity	Target structures shared across pathogen groups (PAMPs)	Pathogen specific
Response kinetics	immediate	gradual
memory	no	Rapid enhanced protection against re- infection
		vaccines

Recent studies have helped in understanding this

The non-specific effects of vaccines- Smallpox, measles, polio, inactivated Influenza, BCG

BCG protects non-specifically against heterologous infection reducing mortality

Prentice et al Lancet Infectious diseases 2021 Nemes et al NEJM 2018 Aaby et al J Infectious diseases Roth et al BMJ 2010, Epidemiology 2006 Stensballe et al Vaccine 2005

Kleinnijenhus et al PNAS 2012 Arts et al Cell Host Microbe 2018 controlled infections in humans-yellow fever vaccine, malaria BCG non-specific protection against diseases - How does it work?

Improve host defence to pathogens

BCG non-specific protection against diseases – Innate Immune Training or Trained Immunity What happens in the cell to mediate this?

reprogrammed for enhanced responses

Trained Immunity: Long-term epigenetic and metabolic reprogramming of transcriptional pathways and function of innate immune cells, evoked by endogenous or exogenous stimuli which leads to an altered response to a secondary challenge.

Potential for detrimental impacts of Trained Immunity

Tercan et al. Arteriosclerosis, Thrombosis, and Vascular Biology 2020.

An elegant example of protection against disease in nature

Traditional European farming environments Traditional versus industrialised farming practices USA

von Mutius E, Vercelli D. Nat Rev Immunol. 2010;10(12):861-8. Stein et al NEJM 2016.

Profound protection in children

- Allergic asthma
- Early infections
- Allergic rhinitis
- Protection mediated by exposure to microbial compounds Respiratory (microbes in barn dust) & Gastrointestinal (unpasteurised milk)
- Exposure of pregnant mother (transplacental) and infant
- Replicated in multiple locations
- Innate and adaptive changes
- Exvivo, invitro, animal models provide mechanistic insight
- Childcare attendance. Ball TM et al. NEJM 2000.
- Household pets[.] Ownby et al. JAMA 2002.

Traditional farm environments: hallmark characteristics of Trained Immunity Pivotal to considering strategies for asthma prevention

TLR dependent-

Activation/maturation/Epigenetic changes in myeloid cells conferring functional immune competence Direct sensing by maternal immune system Regulated development of immune competence in children

Enhanced regulatory functions

Attenuated microbial sensing in placenta

¹Ege MJ et al. JACI 2006.
²Schaub B et al. JACI 2009 Stein et al, NEJM 2016

Activation of innate and regulatory pathways to equip the infant with capacity to appropriately shape and calibrate downstream immune responses

Microbial based therapeutics used to boost immune system function for the prevention of infections

.....

- Lactobacillus
- Flagellin
- Endotoxin
- Streptococcus bacteriotherapy
- Probiotics
- Poly Bacterial lysates : MV130, OM85

reduced number, severity, febrile time, duration, hospital days, wheeze, antibiotic use.

Influenza, RSV, RV (SARS-CoV-2) Protects against secondary bacterial infections

infants, children, adults (COPD, HIV).

Schaad et al. Immunostimulation with OM-85 in children with recurrent infections of the upper respiratory tract: a double-blind, placebo-controlled multicentre study. Chest 2002.

Collet et al Effects of an immunostimulating agent on acute exacerbations and hospitilisations in patients with COPD. The PARI-IS steering committee and research group. AJRCCM 1997.

Alecsandru et al. Sublingual therapeutic immunization with a polyvalent bacterial preparation in patients with recurrent respiratory infections: immunomodulatory effect on antigen-specific memory CD4+ T cells and impact on clinical outcome. *Clin Exp Immunol* (2011)

Esposito et al. A randomized, placebo-controlled, double-blinded, single-centre, phase IV trial to assess the efficacy and safety of OM-85 in children suffering from recurrent respiratory tract infections. J Transl Med. 2019

Rozy et al Bacterial immunostimulants—mechanism of action and clinical application in respiratory diseases. Pneumonol Alergo Pol. 2008.

Razi et al. The immunostimulant OM-85 BV prevents wheezing attacks in preschool children. JACI 2010 **Schaad.** OM-85BV, an immunostimulant in pediatric recurrent respiratory tract infections: a systematic review. World J Pediatr. 2010

Steurer-Stey et al Oral purified bacterial extracts in chronic bronchitis and COPD: systematic review. *Chest* (2004)

Capetti et al Four years of immunization with OM-85 BV to prevent respiratory infections in HIV+ patients. Hum Vaccin Immunother. 2013

Koatz et al. <u>Clinical and Immunological Benefits of OM-85 Bacterial Lysate in Patients with Allergic Rhinitis</u>, Asthma, and COPD and Recurrent Respiratory Infections Lung. 2016

Parola, et al. Selective activation of human dendritic cells by OM-85 through a NF-kB and MAPK dependent pathway. *PloS One* 2013

De Boer et al. Bacterial lysate therapy for the prevention of wheezing episodes and asthma exacerbations: a systematic review and meta-analysis. Eur Resp Review2020.

<u>Pivniouk et al</u> The Om-85 Bacterial lysate inhibits SARS-CoV-2 infection of epithelial cells by downregulating SARS-CoV-2 receptor expression. JACI 2022.

OM PHARMA'S STORY

Ricard family, 1937

Ricard family, 1937

The invention and vision: Oriented science An oral vaccine for bacterial infections

About OM-85

Navarro et al. Mucosal Immunology 2011 Strickland et al Mucosal Immunology 2011

The immune modulating agent OM-85: MoA

Prevents respiratory tract infections (and secondary bacterial infections)

- Activity is dependent on PRR engagement and activation of key signaling pathways (MyD88, Triff, NFkB)
- Acts on a variety of innate cell types in the periphery and bone marrow precursors
- Broad non-specific antimicrobial cellular and humoral immunity (IgA, IgG, AMP, improved barrier integrity)
- Activation/maturation of myeloid cells- facilitating strong antiviral responses (activation of IRF transcription factors and type I IFNs)
- Expression of cytokines/chemokines to control inflammation and cell recruitment
- Modulates myeloid cell surface molecule expression (antigen recognition) important for instruction of adaptive immune responses
- Modulates key pathways involved in inflammation, controlling levels of proinflammatory cytokine production (IL-1-Inflammasome axis)
- Induces a strong immunoregulatory signal (Treg cells, reduced Th2)

Describes a Trained Immunity that promotes antimicrobial responses. Selective activation and priming of innate cells with concomitant activation of immunoregulatory immune functions. Combat infection and Control inflammation.

Does OM-85 protect against development of allergic airways disease?

Can we replicate traditional farming environmental effects with OM-85?

Strickland et al. Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control. Mucosal Immunology 2011.

Navarro et al. The oral administration of bacterial extracts prevents asthma via the recruitment of regulatory T cells to the Airways. Mucosal Immunology 2011.

De Jong et al. IRF-7-associated phenotypes have dichtomous responses to virus/allergen co-exposure and OM-85-induced programming. Frontiers Immunology 2021.

Pivniouk et al. <u>Airway administration of OM-85, a bacterial lysate, blocks experimental asthma by targeting dendritic cells and the epithelium/IL-33/ILC2 axis</u>. J Allergy Clin Immunol. 2022.

OM-85 in the primary prevention of respiratory viral infections in infants at high risk for asthma development – the OMPAC study. Sly et al JACI 2019

Phase2 double blind, randomized, placebo-controlled trial in infants 3-9 months old at high risk for asthma development

- A. The time to the first sLRI was significantly longer for children receiving OM85 than for those receiving placebo median, 442.0 days [25% to 75%, >853.0-124.0 days] vs 85.0 days [25% to 75%, 386.0-54.0 days]
- B. The cumulative frequency of sLRIs was greater in the placebo group total, 58; median, 2.00 [25% to 75%, 0.00-3.00] vs total, 75; median, 1.00 [25% to 75%, 1.00-5.00]
- C. Throughout the study period, children in the placebo group had more days of sLRIs than those randomized to OM85 total, 838 days; median, 589 days [25% to 75%, 428-749 days] vs total, 656 days; median, 439 days [25% to 75%, 212-545 days]

Nieto et al. AJRCCM 2021. MV130-protects against childhood recurrent wheeze

OMPAC study - mechanism

• Two groups: OM85 treatment (n=29) and placebo (n=30)

Boosts immunity associated with protection against severe respiratory infection and asthma (Type I IFN/IRF7) Rewires innate inflammatory gene networks in response to LPS*

Decrease proinflammatory response

OM85 reprograms the antibacterial arm of the immune response to protect against sLRI's.

Increase in circulating T-reg cells

Number of trials underway evaluating OM85 in prevention of childhood wheezing ORBEX trial- US PReCISe (comparative study of treatment modalities)-US Trained Immunity – opportunities during pregnancy/early life for prevention of exaggerated responses to respiratory infections & development of asthma

Pregnancy-heightened susceptibility to dysregulated inflammatory responses Pre-term birth, fetal growth restriction, increased mortality, morbidity Program immune dysregulation in developing fetus

Maternal

immune

activation

Developmental plasticity

OM-85 studies- preclinical models and methodology

OM85 in pregnancy- summary of key findings Beneficial maternal/ fetal effects to combat infection

OM85 reduces maternal disease severity

maintains gestational tissue homeostasis supports fetal growth and development

OM85 in pregnancy provides beneficial maternal/ fetal effects to combat infection

OM-85 reprograms transcriptional inflammatory networks

Protection is mediated by selectively constraining proinflammatory responses and preserving/promoting IRF7 responses.

OM85 treatment during pregnancy protects against early life viral infection severity

Infection murine RV Neonatal day 2

Lauzon-Joset et al Clin Trans Immunol 2021

OM-85 studies- asthma

Broader application of immune modulatory agents

Sánchez-Ramón et al. <u>Sublingual Bacterial Vaccination Reduces Recurrent</u> <u>Infections in Patients With Autoimmune Diseases Under Immunosuppressant</u> <u>Treatment</u>. Front Immunol. 2021

Pérez-Sancristóbal et al. <u>Long-Term Benefit of Perlingual Polybacterial Vaccines in</u> <u>Patients with Systemic Autoimmune Diseases and Active Immunosuppression</u>. Biomedicines. 2023

Guevara-Hoyer et al. Trained Immunity Based-Vaccines as a Prophylactic Strategy in Common Variable Immunodeficiency. A Proof of Concept Study. *Biomedicines.* 2020

Capetti et al. Four years of immunization with OM-85 BV to prevent respiratory infections in HIV+ patients Hum Vaccin Immunother. 2013

<u>Julia Hauer.</u> Toward prevention of childhood ALL by early-life immune training. Blood. 2021

<u>Ochoa-Grullón et al.</u> Trained Immunity-Based Vaccine in B Cell Hematological Malignancies With Recurrent Infections: A New Therapeutic Approach. <u>Front</u> <u>Immunol.</u> 2020

Trained Immunity : a tool to enhance Vaccines?

Del Fresno et al. The Bacterial Mucosal Immunotherapy MV130 Protects Against SARS-CoV-2 Infection and Improves COVID-19 Vaccines Immunogenicity. Front Immunol 2021.

Jose Luis Subiza. Editorial: Trained Immunity-based vaccines Front Immunol. 2021. Leentjens et al. BCG vaccination enhances the immunogenicity of subsequent Influenza vaccination in healthy volunteers: a randomised, placebo-controlled pilot study. J Infect Dis 2015. Thank you