### **Adult Immunisation Forum 2021**

# **Update on COVID-19**

Professor Dominic Dwyer
Director, Public Health Pathology, NSWHP
Director, NSWHP-ICPMR
Westmead Hospital









Published Date: 2019-12-30 23:59:00

Subject: PRO/AH/EDR> Undiagnosed pneumonia - China (HU): RFI

Archive Number: 20191230.6864153

UNDIAGNOSED PNEUMONIA - CHINA (HUBEI): REQUEST FOR INFORMATION

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

A ProMED-mail post

http://www.promedmail.org

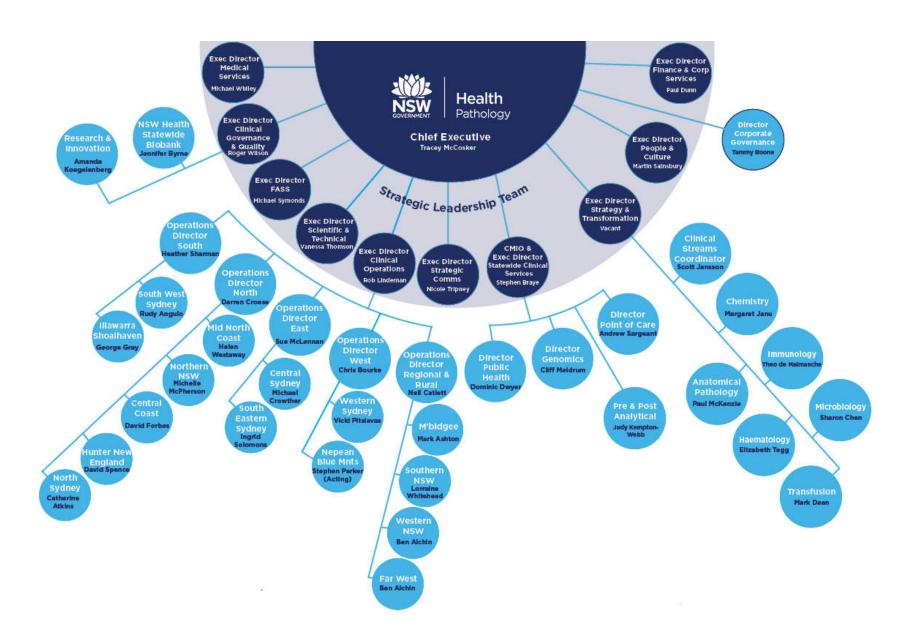
ProMED-mail is a program of the

International Society for Infectious Diseases

http://www.isid.org

#### New reported cases

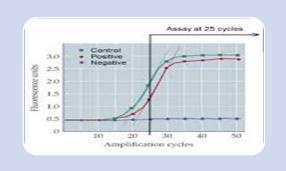
Deaths



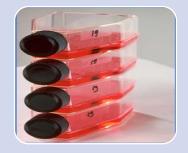

7,918

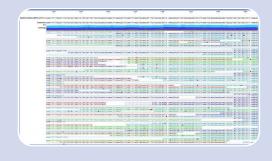
-23%

3,897,507


# **NSW Health Pathology Structure**




# **NSW Health Pathology COVID-19 testing**


- NSWHP Public Health Pathology State-wide Service
- Centralised approach to testing strategies and roll-out 2020-21
- Current testing program
- New issues
  - Saliva testing for occupational assessment
  - Rapid antigen/antibody testing

# SARS-CoV-2 testing in NSWHP









SARS-CoV-2 NAT (PCR) Testing SARS-CoV-2 Serology Testing SARS-CoV-2 Culture SARS-CoV-2 Whole Genome Sequencing

## **NSWHP-SARS-CoV-2 NAT Roll-out Phases**



# Elizabeth MacArthur Agricultural Institute (EMAI)

- NSW Public Health Veterinary Laboratory at Menangle
- Managed the equine influenza outbreak in 2007-8, performing up to 30,000 PCRs weekly
- Assisting NSWHP with COVID-19 testing
- Accreditation and microbiologist supervision (Catherine Pitman, Dominic Dwyer)
- Surge capacity for Westmead, Nepean, Liverpool (and Vic)
- Production and validation of viral transport medium (30,000+/week)
- Saliva testing for occupational screening

# **COVID-19 PCR Testing**







### **COVID-19 Pandemic: EMAI vs NSWHP**

- First meeting 24<sup>th</sup> March 2020
- Testing at EMAI 30<sup>th</sup> March 2020
- COVID-19 Diagnostic PCR: 52 000 tests
- COVID-19 Saliva PCR 150 000 tests

Catherine Pitman- NSWHP

# **NSWHP SARS-CoV-2 Rapid NAT**



- GeneXpert rapid NAT (1-4 hours) for high risk patients where urgent result is required
- Indications for use issued through Clinician factsheet ('bracket creep')
- Major evaluations performed by ICPMR and JHH
- Rolled out to 37 NSWHP laboratories in April-May 2020
- Centralised QC and cartridge distribution to testing laboratories
- Variable supply (especially in early-mid 2020)
- Influenza/RSV/SARS-CoV-2 cartridges available
- Alternative systems available

# Rapid antigen testing

#### Cons

- Less sensitive
- Not high throughput
- Role in screening?
- Lack of integration into LIS/EMR
- Cost/billing/supply chain
- False positives
- Only 7 now FDA approved

#### **Pros**

- Reasonably sensitive in first 5-7 days of illness
- Rapid (10-20 minutes)
- Single use
- 'Out of lab' testing
  - Remote location use
  - Home testing

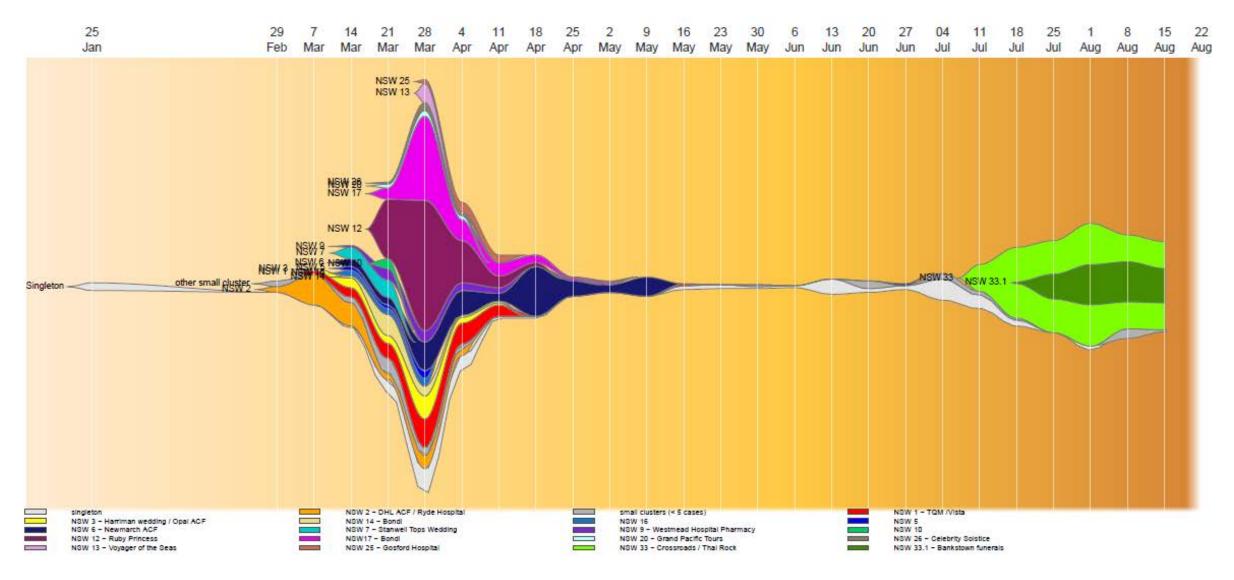
# Saliva testing for SARS-CoV-2

- Frequent NP sampling unpopular
- NSWHP not sample of choice for disease diagnosis, but occasionally acceptable
- Quarantine workers: screening versus symptomatic scenarios
- Sample collection methods
- (reduced) sensitivity and lower viral loads
- NAT only (not rapid antigen, antibody testing, immune markers)
- Separate from clinical testing

# **SARS-CoV-2 Serology Roll-out Phases**

**Phase 1 ICPMR Westmead** – IFA (IgG/A/M) and neutralisation assays (from 20 February 2020)

Phase 2 Randwick/Kirby – IgG EIA and neutralisation assays (from 15 May 2020)


Phase 3 Concord, JHH, Liverpool, RPAH, RNSH

IgG EIA high-throughput assays (from 7 October 2020)

# Rapid antibody testing

- Mostly rapid lateral flow point-of-care tests, some with readers
- Many evaluated by NSWHP\*
- Sensitivity 27-58% and specificity 88-100%
- Lags 2-9 days behind immunofluorescence
- Performance dependent on disease prevalence
- Not supported by NSWHP
- Quality issues identified by FDA and other regulatory agencies (also in rapid antigen assays, viral transport media, swabs)
- 175 previously notified assays removed by FDA

## **Evolution of clusters in New South Wales**



# Variants of Concern (VOC)

| WHO label | Pango<br>lineage | GISAID<br>clade/lineage   | Nextstrain clade | Earliest documented samples | Date of designation                 |
|-----------|------------------|---------------------------|------------------|-----------------------------|-------------------------------------|
| Alpha     | B.1.1.7          | GRY (formerly GR/501Y.V1) | 20I (V1)         | United Kingdom,<br>Sep-2020 | 18-Dec-2020                         |
| Beta      | B.1.351          | GH/501Y.V2                | 20H (V2)         | South Africa,<br>May-2020   | 18-Dec-2020                         |
| Gamma     | P.1              | GR/501Y.V3                | 20J (V3)         | Brazil,<br>Nov-2020         | 11-Jan-2021                         |
| Delta     | B.1.617.2        | G/478K.V1                 | 21A              | India,<br>Oct-2020          | VOI: 4-Apr-2021<br>VOC: 11-May-2021 |

## **VOC** in Australia

| State/Territory | B.1.1.7 | B.1.351 | P.1 | B.1.617.1 | B.1.617.2 |
|-----------------|---------|---------|-----|-----------|-----------|
| ACT             | 0       | 5       | 0   | 0         | 1         |
| NSW             | 140     | 22      | 6   | 9         | 62        |
| NT              | 13      | 2       | 0   | 11        | 28        |
| QLD             | 85      | 20      | 0   | 5         | 9         |
| SA              | 61      | 7       | 0   | 4         | 12        |
| TAS             | 0       | 0       | 0   | 0         | 0         |
| VIC             | 97      | 8       | 0   | 77        | 29        |
| WA              | 51      | 14      | 1   | 4         | 25        |

# **Variants of Interest (VOI)**

| WHO label | Pango<br>lineage | GISAID<br>clade/lineage | Nextstrain clade | Earliest documented samples              | Date of designation |
|-----------|------------------|-------------------------|------------------|------------------------------------------|---------------------|
| Epsilon   | B.1.427/B.1.429  | GH/452R.V1              | 21C              | United States of<br>America,<br>Mar-2020 | 5-Mar-2021          |
| Zeta      | P.2              | GR/484K.V2              | 20B/S.484K       | Brazil,<br>Apr-2020                      | 17-Mar-2021         |
| Eta       | B.1.525          | G/484K.V3               | 21D              | Multiple<br>countries,<br>Dec-2020       | 17-Mar-2021         |
| Theta     | P.3              | GR/1092K.V1             | 21E              | Philippines,<br>Jan-2021                 | 24-Mar-2021         |
| lota      | B.1.526          | GH/253G.V1              | 21F              | United States of<br>America,<br>Nov-2020 | 24-Mar-2021         |
| Карра     | B.1.617.1        | G/452R.V3               | 21B              | India,<br>Oct-2020                       | 4-Apr-2021          |
| Lambda    | C.37             | GR/452Q.V1              | 20D              | Peru, Aug-2020                           | 14-Jun-2021         |

## **Treatments for COVID-19**

- Supportive
- Outpatients
- Mild-moderate COVID-19 (not hospitalised)
  - SARS-CoV-2 MAbs (bamlanivimab+etesevimab; cairivimab+imdevimab)
  - (Not chloroquine/hydroxychloroquine, dexamethasone, antibiotics)
- Hospitalised COVID-19: no O<sub>2</sub>/O<sub>2</sub>/ventilated
  - Remdesivir
  - Dexamethasone
  - Tocilizumab (anti-LI-6)

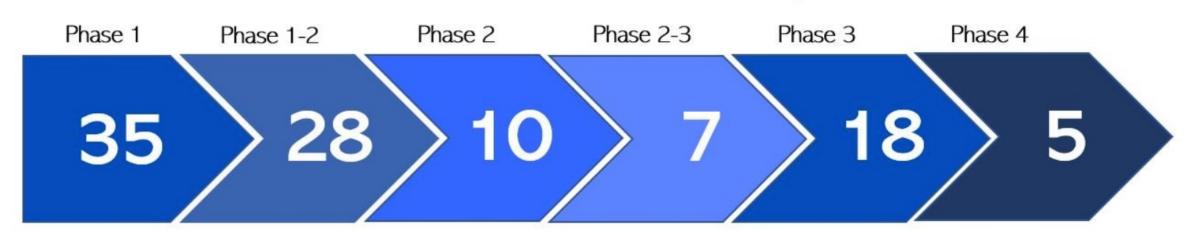
# **Antiviral targets**

|      | Target                                                                                         | HIV | SARS-CoV-2 |
|------|------------------------------------------------------------------------------------------------|-----|------------|
| 1.   | Virus adsorption (attachment) to the host cells                                                | Yes | Yes        |
| 2.   | Virus penetration into the host cells (for enveloped viruses by fusion)                        | Yes | Yes        |
| 3.   | Uncoating (decapsidation) so as to release viral (+)RNA (= mRNA)                               | Yes | Yes        |
| 4.1. | Reverse transcription (+)RNA -> (±)DNA by RNA-dependent DNA polymerase (reverse transcriptase) | Yes | No         |
| 4.2. | RNA-dependent RNA polymerase (RdRp) (+)RNA -> (-)RNA -> (+)RNA                                 | No  | Yes        |
| 5.   | Integration of (±) proviral DNA into host cell chromosome                                      | Yes | No         |
| 6.   | Transcription of proviral (-)DNA to mRNA by cellular DDRp (DNA-dependent RNA polymerase)       | Yes | No         |
| 7.   | Viral mRNA translation to viral proteins                                                       | Yes | Yes        |
| 8.   | Posttranslational modification (proteolytic cleavage by HIV protease, glycosylation,)          | Yes | Yes        |
|      | Formation of structural (S) and non-structural (NS) proteins                                   |     | _          |
| 9.   | Assembly                                                                                       | Yes | Yes        |
| 10.  | Budding (release of virus particles)                                                           | Yes | ?          |

## **SARS-CoV-2 vaccines**

287

Total candidate vaccines


103

Clinical phase

184

Pre-clinical phase

#### **COVID-19 Vaccines in Clinical Development**





The WHO-China Joint Report: https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19)

(personal viewpoint: https://theconversation.com/i-was-the-australian-doctor-on-the-whos-covid-19-mission-to-china-heres-what-we-found-about-the-origins-of-the-coronavirus-155554)