Vaccine Options for Seasonal Influenza

Kanta Subbarao

WHO Collaborating Centre for Reference and Research on Influenza & Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity

The burden of influenza

Global seasonal influenza-associated respiratory mortality

- Previous estimates were 250,000 to 500,000 deaths globally/year
- New estimates from 47 countries (1995-2015)
 - 291,243 to 645,832 deaths annually ~ 4.0 to 8.8/100,000 persons
 - Highest in sub-Saharan Africa, southeast Asia and persons older than 75 years (17.9-223.5/100,000 persons)
 - In children <5 years: 9,243-105,690 deaths annually
- 36,000 deaths and >200,000 hospitalisations/year in the US
- Ever present threat of pandemic influenza

The haemagglutinin and neuraminidase are the main targets of the protective antibody response

Nature Reviews | Immunology

Course of Immune Response During Influenza Infection

Source: Subbarao et al. Immunity 24, 5-9 (2006)

Currently licensed influenza vaccines

<u>Principle</u>: Induction of a protective immune response against the haemagglutinin protein

- Based on serum antibody response to the hemagglutinin (HA) protein
- Offered as trivalent or quadrivalent formulations to cover epidemic influenza A and B viruses
 - Trivalent vaccines contain A/H1N1, A/H3N2 and one B strain
 - Quadrivalent vaccines contain A/H1N1, A/H3N2, B Yamagata-lineage and B Victoria-lineage viruses.

Inactivated influenza vaccine

- The inactivated influenza vaccine (IIV) contains 15μg of each HA antigen and is administered by intramuscular injection
- Virus infectivity is inactivated with formalin or betapropriolactone.
- The virions are detergent-disrupted and the preparation is enriched for glycoproteins (HA and NA) by centrifugation.
- In 2018, trivalent 'enhanced' vaccines were available in Australia for use in people >65 years of age
 - high dose IIV containing 60μg of each HA antigen
 - adjuvanted IIV with an oil in water adjuvant

Key principles underlying licensed influenza vaccines

- Influenza vaccines mediate protection through antibody directed at the haemagglutinin (HA). Therefore, antigenic drift often necessitates an update in the vaccine composition.
- Antigenic changes are the result of genetic drift, which can be monitored by sequencing the HA but genetic drift doesn't always lead to antigenic change.
- >95% of the global vaccine supply is manufactured in embryonated eggs

WHO GISRS network

Oldest network in WHO: begun in 1952, 144 NIC's in 114 countries, 5 WHO CC's for human influenza + 1 for animal influenza + 4 essential regulatory labs,

A variety of information is used to select influenza vaccine viruses

Comparative titres by haemagglutination inhibition & VN assays

Sequence data

- HA & NA
- Some full genome

Antiviral drug resistance

- Oseltamivir
- Zanamivir
- Other compounds

Also used

- Epi data
- Vaccine effectiveness data
 - Human Serology
 - Structural data
 - Modellers predictions

Candidate vaccine viruses (CVV's)

Other information

Growth in eggs/qualified cells

WHO vaccine strain recommendation process

A WHO committee meets twice a year to recommend suitable strains to be included in the vaccine for the upcoming influenza season:

- northern hemisphere winter (decided in February)
- southern hemisphere winter (decided in September)

Surveillance and vaccine candidate data are compiled and shared between WHO Collaborating Centres.

A vaccine strain change is recommended only if the following are widely observed amongst circulating viruses:

Antigenic changes

Marked changes in the antigenic profile in 2way HI assays compared with previous vaccine strains

Sequence changes

Changes in HA gene sequences, especially at known antigenic and receptor-binding sites

Availability of suitable

Serology changes

Poor recognition by serum panels from human recipients of the previous vaccine

National authorities make the final decision for their country. Vaccine production takes about 6 months

Vaccine composition recommended for 2018/2019 seasons

2018/19 Northern hemisphere

- H1N1pdm09: A/Michigan/ 45/2015-like
- H3N2: A/Singapore/INFIMH 16-0019/2016-like*

Quadrivalent vaccine:

B/Yam: B/Phuket/3073/2013-like B/Vic: B/Colorado/06/2017-like*

Trivalent vaccine:

B/Vic: B/Colorado/06/2017-like*

* Changed from 2017/2018 recommendations

2019 Southern hemisphere

- H1N1pdm09: A/Michigan/ 45/2015-like
- H3N2: A/Switzerland/ 8060/2017-like*

Quadrivalent vaccine:

B/Yam: B/Phuket/3073/2013-like B/Vic: B/Colorado/06/2017-like*

Trivalent vaccine**:

B/Vic: B/Colorado/06/2017-like*

* Changed from 2018 recommendations

^{**} AIVC recommended B/Yam instead of B/Vic in the trivalent vaccine

Key challenges with seasonal influenza vaccines-1

Antigenic drift necessitates an update in the vaccine composition

- Challenge: About 50% of A/H3N2 viruses cannot be isolated or characterised in HAI tests
- Potential solution: A focus reduction assay (FRA) as an alternative to the HAI assay - but it is not high throughput

Genetic drift

 Challenge: Enormous genetic diversity with several clades and subclades co-circulating but few clades are associated with antigenic difference in HAI assays

A/H3N2 phylogenetic tree

Phylogenetic analysis from Univ. Cambridge

Global A(H3N2) HA 3C clade diversity February-Sept 2018 based on HA sequence availability

Key challenges with seasonal influenza vaccines-2

Manufacture in embryonated eggs

- Challenge: Adaptation to growth in eggs induces mutations in the HA.
- Antibody responses induced by egg-grown vaccines react well with other egg-grown viruses but not with cell-grown viruses.
 - The sequence of cell-grown viruses resembles that of virus present in clinical samples.
- Potential solutions:
 - Isolate and characterise more egg isolates in order to select viruses without signature egg-adaptation changes for vaccine development
 - Cell grown vaccine
 - Recombinant HA vaccine

Assessment of Vaccine Effectiveness: The test negative design

Sullivan SG et al. Expert Rev Vaccines 2014;13:1571-91.

Antigenic analysis of virus isolates: Australia May-Sept 2017

Influenza strain	Assay	Number of viruses	Cell propagated reference strain		
			Like	Low- reacting	
A/H1N1pdm09	HAI	46	46	0	
A/H3N2	HAI	00	60	7	
	FRA	90	31	0	
A/H3N2: Insufficient titer for HAI	FRA	98	44	0	
B/Victoria lineage	HAI	6	3	1	
B/Yamagata lineage	HAI	90	52	0	

Sullivan et al Eurosurveillance 2017: 22(43): pii=17-00707

Antigenic analysis of virus isolates: Australia May-Sept 2017

Influenza strain	Assay	Number of viruses	Cell propagated reference strain		Egg propagated reference strain	
			Like	Low- reacting	Like	Low- reacting
A/H1N1pdm09	HAI	46	46	0	46	0
A/H3N2	HAI	90	60	7	45	22
	FRA		31	0	28	0
A/H3N2: Insufficient titer for HAI	FRA	98	44	0	32	12
B/Victoria lineage	HAI	6	3	1	0	4
B/Yamagata lineage	HAI	90	52	0	50	2

Sullivan et al Eurosurveillance 2017: 22(43): pii=17-00707

Interim vaccine effectiveness: Australia May-Sept 2017

Type/ subtype	Cases (test positive)		Controls (test negative)		Adjusted VE	95% CI
	Unvaccinated	Vaccinated	Unvaccinated	Vaccinated		
A or B	772 (73%)	288 (27%)	802 (63%)	477 (37%)	33%	17 to 46
A/H1N1 pdm09	74 (84 %)	14 (16%)	802 (63%)	477 (37%)	50%	8 to 74
A/H3N2	347 (66%)	175 (34%)	802 (63%)	477 (37%)	10%	-16 to 31
B/Vic	11 (100%)	0 (0%)	802 (63%)	477 (37%)	Not estimated	
B/Yam	206 (80%)	53 (20%)	802 (63%)	477 (37%)	45%	22 to 62

Sullivan et al Eurosurveillance 2017: 22(43): pii=17-00707

Challenges with current A/H3N2 influenza viruses-Summary

- Difficult to isolate viruses (only ~50% of viruses can be isolated in culture) due to changes in HA
- Difficult to complete antigenic characterisation using the hemagglutination inhibition (HI) assay due to molecular changes in HA and NA
 - Relying on neutralisation assays instead but they are not high-throughput assays
- Molecular data indicates significant genetic heterogeneity: viruses fall into different clades and subclades
- Ferret antisera do not distinguish among the clades; therefore, there is no antigenic signature for viruses in the different clades

Limitations of current influenza vaccines

- Vaccines require months to manufacture
- Reduced effectiveness when vaccine and epidemic strains are antigenically mismatched
- Suboptimal efficacy in the elderly
- Short duration of protection
 - Antigenic drift results in need for annual reformulation
 - Antigenic shift requires a new vaccine component
- Most of the currently licensed influenza vaccines are generated in embryonated eggs

Research efforts to improve seasonal influenza vaccines

- Increase the immunogenicity of existing vaccines
 - Adjuvants
 - High dose
- Increase the breadth of immunity
 - Adjuvants
 - Neuraminidase
- Change the substrate to avoid effects of egg-adaptation mutations
 - Cell-grown vaccines
 - Recombinant HA vaccines

Influenza Vaccines available in the US

Inactivated

Killed virus

- grown in eggs or cells
- Trivalent or quadrivalent
- injected

Recombinant

Expressed protein

Live

Live, weakened virus

- grown in eggs
- Trivalent or quadrivalent
- given intranasally
- for healthy individuals aged2-49 years

What does the future hold?

- Continued vigilance to identify antigenic drift and antigenic shift events
- More cell based influenza vaccine components and vaccines
- Adjuvants to increase the immunogenicity of influenza vaccines
- High dose vaccines for the elderly
- New platforms e.g. virus like particles
- Universal influenza vaccines that elicit broad immunity against a range of influenza viruses and subtypes

The WHO Collaborating Centre for Reference and Research on Influenza in Melbourne is supported by the Australian Government Department of Health