Importance of 1918 virus reconstruction on current assessments to pandemic risk

Jessica A Belser, PhD

Immunology and Pathogenesis Branch Influenza Division Centers for Disease Control and Prevention

National Center for Immunization & Respiratory Diseases

Influenza Division

1918

Influenza A viruses circulating in humans since 1918

Reported human cases of novel influenza A infection, 1959-2017

Diversity of viruses jumping the species barrier to humans

Subtypes of novel influenza A viruses and clinical syndromes associated with human infection

	LPAI viruses	HPAI viruses	Variant viruses*
Conjunctivitis	H7N2, H7N3, H7N7, H10N7	H7N3, H7N7	H1N1v, H3N2v
Upper respiratory tract illness	H6N1, H7N2, H7N3, H7N9, H9N2, H10N7	H5N1, H5N6, H7N7	H1N1v, H1N2v, H3N2v
Lower respiratory tract disease, pneumonia	H7N2, H7N9, H9N2, H10N8	H5N1, H5N6, H7N7, H7N9	H1N1v, H3N2v
Respiratory failure, acute respiratory distress syndrome	H7N9, H10N8	H5N1, H5N6, H7N7, H7N9	H1N1v, H3N2v
Multiorgan failure	H7N9, H10N8	H5N1, H5N6, H7N7, H7N9	
Encephalopathy or encephalitis	H7N9	H5N1	
Fatal outcomes†	H7N9, H9N2, H10N8	H5N1, H5N6, H7N7, H7N9	H1N1v, H3N2v

Diversity of clinical syndromes highlights the challenge in studying the human risk posed by these viruses

Pandemic preparedness and risk assessment

- Assess potential pandemic risk of zoonotic influenza viruses
 - Advance preparedness
 - Response timing and capacity
 - Employs both current and historical data

CDC Influenza Risk Assessment Tool (IRAT)

WHO Tool for Influenza Pandemic Risk Assessment (TIPRA)

Importance of 1918 virus reconstruction

- Identify properties that were responsible for the extraordinary virulence of the 1918 influenza virus
- Identify genetic determinants responsible for the transmissibility of this pandemic virus
- Apply this knowledge to current assessments of pandemic risk
- Archaevirology: the systematic study of pastviruses by the recovery and examination of remaining material evidence

1951 Johan Hultin at permafrost gravesite, Brevig Mission AK

1951 Hultin unable to grow live 1918 virus in lab

1997 Hultin returns to gravesite for frozen lung tissue

Rescuing The 1918 Influenza Virus

2005 CDC shows 1918 virus causes severe pneumonia in mice and identifies the genes responsible for high virulence

2004 Tumpey at CDC rescues 1918 virus in high containment lab

1997 Taubenberger at AFIP begins sequencing the 1918 virus genes

Taubenberger et al, Science 1997 and Antiviral Ther 2007; Tumpey et al, Science 2005; image D Jernigan/B Jester

Initial assessments of the reconstructed 1918 virus

- High-titer replication invitro
- Lethal in mice, ferrets, macaques
- Efficient spread throughout respiratory tract
 - Nasal turbinates, trachea, lung in ferrets
 - Systemic spread not pronounced
- Severe pulmonary inflammation in both mouse and ferretlungs
 - Necrotizing bronchitis, moderate to severe alveolitis with edema

Molecular determinants of 1918 virus virulence

Single-gene reassortant viruses in BALB/c mice

Gene segmen t	1918/Tx91 (7:1) recombinant viruses	Virulence	1918/Tx91 (1:7) recombinant viruses	Virulence
PB2	Same as 1918	High	Same as Tx/91	Low
PB1	Reduced replication	Reduced	Elevated replication	Low
PA	Same as 1918	High	Same as Tx/91	Low
HA	Reduced replication	Low	Elevated replication	High
NA	Reduced replication	Reduced	Elevated replication	Low
NP	Same as 1918	High	Same as Tx/91	Low
Μ	Same as 1918	High	Same as Tx/91	Low
NS	Same as 1918	High	Same asTx/91	Low

Tx/91

1 +1918 PB1

1918 PB1 increases replication efficiency of Tx/91 H1N1 virus in NHBE cells

Tumpey et al, Science 2005; Pappas et al, PNAS 2008

HUMAN VS FERRET CLINICAL SIGNS AND SYMPTOMS OF INFECTION

Close physiologic links between ferret and human respiratory tissues Similar binding patterns of influenza viruses to sialic acid receptors in both species

Belser et al, 2016 MMBR; image by Alissa Eckert

Molecular determinants of 1918 virus virulence

Gene segments from 1918 virus	Morbidity (weight loss)	Peak NW titer Log ₁₀ EID ₅₀ /ml
None (avian H1N1)	6%	6.3
HA, NA	9.1%	6.5
HA, NA, PA	17.5%	8.4
HA, NA, PB1	12.4%	7.1
HA, NA, PB2	12.9%	8.1

Contribution of 1918 surface glycoproteins and polymerase genes contribute to virulence in ferrets and replication at URT temperatures

van Hoeven et al, PNAS 2009; ferrets (through 9 days p.i.) and MDCK cells (48hrs p.i.)

Transmission: respiratory droplet model

- Naive ferrets (white silhouette) are placed adjacent to inoculated ferrets
- Areas of potential exposure to influenza virus are depicted in yellow
- Arrows indicate dispersion of respiratory droplets expelled from the inoculated ferret
- Respiratory droplet model represents the <u>most stringent</u> transmission setup

Belser et al. 2016 MMBR.

1918 virus transmissibility in ferrets

Reconstructed 1918 virus (SC/18)

- Highly transmissible by airborne route
- Lethality in one contact ferret

Seasonal H1N1 virus (Tx/91)

- Transmissible by airborneroute
- Delay in shedding among contacts

Avian H1N1 virus (Dk/Alb)

- Not transmissible by airborne route
- No seroconversion

Receptor binding and 1918 virus transmission

		aa po (H3 numb	sition pering)	Rec bin	eptor ding	Respiratory droplet
Virus	Description	190 aa	225 aa	α2-6	α2-3	Transmission
Tx/91	Seasonal H1N1	D	D	+	\bigcirc	Efficient, 3/3
SC/18	Reconstructed 1918 virus	D	D	+	\bigcirc	Efficient, 3/3
NY/18	Natural variant 1918 virus	D.	G	+	+	Inefficient, 2/3 (1 sero only)
AV/18	"avianized" 1918 virus	E.	G	\bigcirc	+	None, 0/3
Dk/NY	Avian H1N1	Е	G	\bigcirc	+	None, 0/3
Dk/NY- DD	Avian H1N1 with DDmut	D	D	+	\bigcirc	None, 0/3

 α 2-6 receptor binding necessary but not sufficient for virus transmissibility

Tumpey et al. Science, 2007; van Hoeven et al, PNAS 2009.

Molecular determinants of 1918 virus transmission

On background of avian H1N1 virus	Respiratory droplet		
Gene segments from 1918 virus	Transmission	Conclusion	
All (fully reconstructed 1918 virus)	Efficient, 3/3		
None (avian H1N1 virus)	None, 0/3		
HA	None, 0/3	1918 surface	
HA, NA	,NA None, 0/3		
HA, NA, pol complex (PB1, PA, PB2)	Efficient, 3/3	Role for internals	
HA, NA, PA None, 0/3		Role for PB2	
HA, NA, PB1	None, 0/3	specifically	
HA, NA, PB2	Efficient, 3/3		
HA, PB2	Efficient, 3/3		
Everything but PB2 None, 0/3		PB2 necessary but	
PB2	Inefficient, 1/3	not sufficient	
All, PB2 K627Emutation	Inefficient, 1/5	Role for 627K	

1918-like viruses

Likelihood and impact of "1918-like" viruses emerging from the contemporary avian reservoir

- Viral segments that encoded proteins with high homology to 1918 viral proteins
- Generated "1918-like" avian influenza virus
- Higher pathogenicity in mice and ferrets than authentic avian virus
- Transmissibility (1/3, then 2/3) following aa substitutions (HA, PB2, PA), then serial
- 0/3 to 1/3: "loose" bottleneck with high within-host HAdiversity
- 1/3 to 2/3: strongly selective bottleneck after additional HA mutations emerged

Watanabe et al, Cell Host & Microbe, 2014; Moncla et al, Cell Host & Microbe 2016.

Risk assessment post-1918 virus reconstruction

- 2009 H1N1 pandemic
 - Importance of receptor binding preference
- Variant H1 and H3 viruses from swine reservoirs
 - Role of HA and NA on mammalian pathogenicity and transmissibility
- Novel H5 and H7 viruses from avian reservoirs
 - Contribution of PB1-F2

Pandemic H1N1 91 years later

Escalation of confirmed 2009 H1N1 human cases from first detection to declaration of a pandemic Global distribution of estimated deaths associated with 2009 H1N1 during the first year of virus circulation

- 18,500 laboratory-confirmed deaths (April 2009-August 2010)
- Global mortality estimates >200,000 respiratory, >83,000 cardiovascular
- >80% in persons <65 years old, ~50% in southeast Asia and Africa
- Symptomatic case-fatality ratio estimates:
 - 1918:1-2.1%
 - 2009: 0.05%

Receptor binding specificity: 2009 vs 1918

- 2009 H1N1 does not possess many known markers of mammalian virulence/transmissibility
 - No 627K/701D in PB2, truncated PB1-F2
- D225G (H3 numbering) present in >1% of 2009 H1N1 viruses
 - Associated with severe pneumonia, ICU admittance, and death
 - Present during 1918 pandemic

Role of HA 225 in H1N1 pandemic influenza

- D225G mutation did not augment transmissibility of 2009 H1N1 virus
- Comparable mouse and ferret pathogenicity

Increased binding to human type II pneumocytes and alveolar macrophages

Enhanced replication in respiratory epithelial cells

Belser et al. PLoS ONE, 2011; Chutinimitkul et al, J Virology 2010.

HA glycosylation patterns of 1918 and seasonal flu

- Presence of glycans in close proximity to receptor binding domain can modulate binding affinity and specificity
 - 1918 and 2009 H1N1: 1 glycosylation site on HA globular head
 - Seasonal (pre-2009) H1N1: 4-5 glycosylation sites
- Modulation of glycans (G) can influence pathogenicity and binding specificity in mice

Virus HA	Weight loss	LD ₅₀	Receptor binding
1918	24.8%	10 ^{2.2}	+2G reduced binding
1918 + 2G(142, 172)	20%	10 ^{4.6}	
2006 seasonal H1N1	6.2%	>106	-2G increased binding
H1N1 – 2G (142, 177)	25%	10 ^{3.5}	

Diversity of North American H1 viruses

Evolution of North American H1 HA

Continuous evolution resulted the generation of genetically distinct clades, leading to many human infections

Pulit-Penaloza et al, manuscript under review.

Importance of HA and NA lineage on virus transmissibility from swine

				Ferret peak morbidity	Log ₁₀ PFU/ml	Respiratory droplet
Subtype	year	HA	NA	Weight loss	Lung titer d3	Trans
H1N1	2000	swine	swine	5%	3.2	0/2
H1N1	2002	swine	swine	9%	3.05	0/2
H1N1	2005	human	human	5%	4.95	2/2
H1N2	2008	human	human	5%	5.45	2/2

All viruses isolated from swine bearing triple reassortant internal gene cassette

Surface glycoprotein lineage can play a role in virus transmissibility

Virus transmissibility of novel influenza A viruses following exposure to swine

				Ferret peak morbidity	Log ₁₀ EID ₅₀ or PFU/ml	Respiratory droplet
Subtype	Year	HA	NA	Weight loss	Lung titer d3	Trans
H1N1 pandemic	1918	swine	swine	11.7%	6.0	3/3
H1N1 seasonal	2008	human	human	4.9%	<1 (0/3)	3/3
H1N1 pandemic	2009	swine	Eurswine	9.9%	4.4	3/3
H1N1v	2015	swine	swine	12.5%	3.2 (1/3)	1/3
H1N1v	2015	swine	swine	5.1%	4.3	2/3
H1N2v	2016	swine	human	14.4%	3.8	3/3
H1N2v	2016	human	human	14.9%	4.1	1/3
H1N2v	2011	human	human	6.0%	3.7	2/3

All viruses associated with human infection Virus transmissibility in ferrets independent of H1 virus lineage

Pulit-Penaloza et al, manuscript under review; manuscript in preparation.

Detection of H5 subtype influenza viruses in avian species

D Jernigan/B Jester

Detection of H7 subtype influenza viruses in avian species

Belser et al, Lancet Inf Dis 2018. Cartographic perfection by Ryan Lash.

1918, HPAI H5N1, and PB1-F2

- Similarities following infection with 1918 and H5N1 viruses:
 - Increased cellularity in lungs (macrophages and neutrophils)
 - Susceptibility of lung macrophages and dendritic cells to infection
 - High levels of proinflammatory cytokines elicited
- PB1-F2 has known roles in influenza virus virulence
 - Full length vstruncated
 - Presence of virulence-associated residues

1918, HPAI H5N1, and PB1-F2

	50	60
A/Hong Kong/483/97	MHKQIVYWKQ	WLSLKSPTQL
A/Hong Kong/532/97		
A/Hong Kong/542/97		
A/Hong Kong/156/97		· · · · · N · · · ·
A/Hong Kong/97/98	<mark>R</mark>	
A/Hong Kong/486/97	<mark>R</mark>	• • • • • • • • • • • •
A/Hong Kong/538/97	<mark>R</mark>	N
A/Brevig Mission/18	.P	RP

Both 1918 and H5N1 possess single aa substitution in PB1-F2

Virus	aa 66	MLD ₅₀	Lung titer d3
1918WT	S	10 ^{2.5}	>10 ⁷ pfu/ml
1918 mut	Ν	105.25	<10 ⁶ pfu/ml

Expression of 1918PB1-F2 enhances pathogenesis of secondary bacterial pneumonia in mice

A/WSN/33 with A/HK/156/97 PB1

Conenello et al. PLoS Pathogens, 2007; McAuley et al. Cell Host & Microbe, 2007.

Summary and conclusions

- Looking to the past:
 - Archaevirology elucidated the composition of the virus responsible for the 1918 pandemic
 - Role of surface glycoproteins and polymerase genes in both enhanced virulence and transmissibility of the virus
- Looking towards the future:
 - Additional context and understanding of sequence
 - Side-by-side comparisons of 1918 and current pandemic threats
- Research is still ongoing

Acknowledgements

Influenza Division, CDC

- Terry Tumpey
- Taronna Maines
- Jacqueline Katz
- Nancy Cox
- Dan Jernigan
- Barbara Jester
- Claudia Pappas
- Lucy Perrone
- Joanna Pulit-Penaloza
- Xiangjie Sun
- Neal van Hoeven
- Hui Zeng

<u>Armed Forces Institute of Pathology</u>
Jeffery KTaubenberger

Southeast Poultry ResearchLab
David Swayne

- <u>Mount Sinai</u>
 - Adolfo Garcia-Sastre
 - Peter Palese
 - Patricia VAguilar
 - Christopher FBasler
 - Laurel Glaser
 - Alicia Solorzano

National Center for Immunization & Respiratory Diseases

Influenza Division

The findings and conclusions in this study are those of the authors and do not necessarily reflect the official position of the