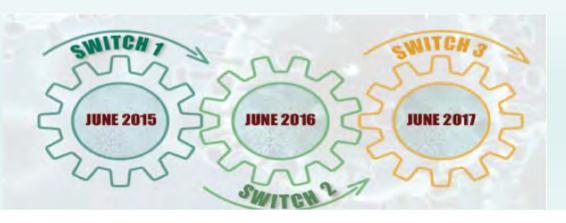
"Prospects for timely and effective vaccines for the next pandemic - Impediments".

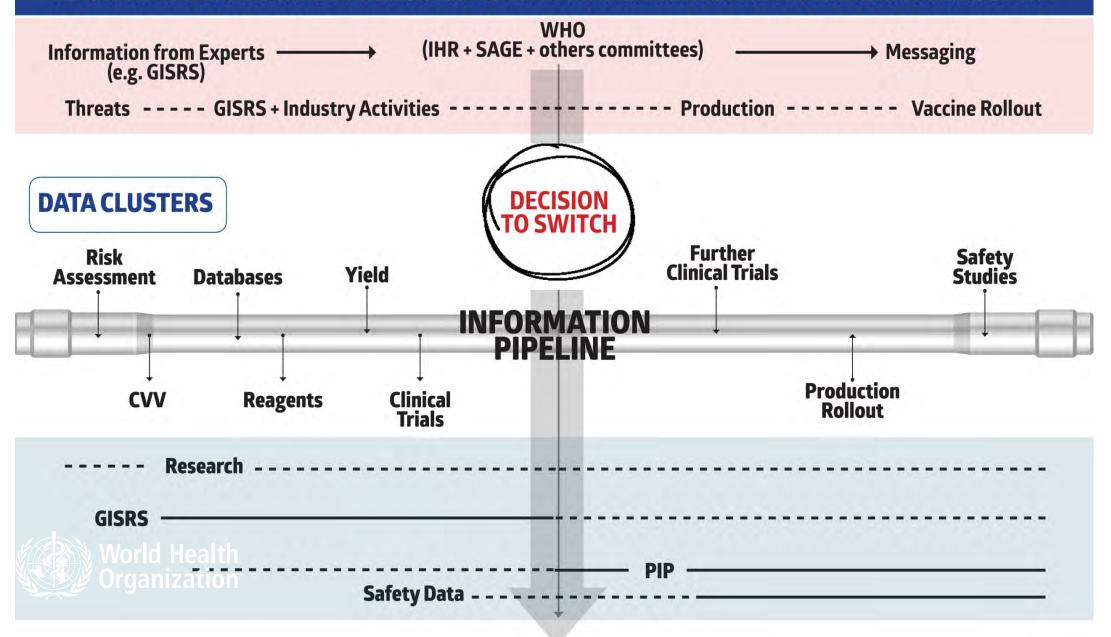
Gary Grohmann

WHO Consultant

Health Systems and Innovation & Essential Medicines Programme

"Prospects for timely and effective vaccines for the next pandemic - Impediments".


- Vaccine will likely not be available for 24 weeks
 - Stockpiles may not be useful
- Issues on the 'Switch' from seasonal to pandemic production
 - Decisions and Bottlenecks
 - CVV development, Biocontainment, Clinical, regulatory, delivery etc
 - Vaccine virus selection
 - Advice to WHO decision makers
- GAP progress after 10 years
- New vaccine platforms, improvements on current vaccines
- Nagoya protocol
- PIP


'Switch' meetings in 2015 2016 2017

Challenges and timelines in producing a pandemic vaccine

- AIM: Develop global strategy and operational mechanism for pandemic vaccine response at the start of a pandemic when seasonal influenza vaccine may still be needed in many parts of the world
- Timelines very tight depend on interaction between many players
 - GISRS, WHO CC, WHO ERLs, GISAID/data platforms
 - Candidate Vaccine Virus (CVV) reassorting laboratories,
 - Vaccine manufacturers,
 - Regulatory agencies,
 - Governments
 - Clinical trial experts
 - Vaccine program managers

INFORMATION LANDSCAPE FOR DECISION TO SWITCH FROM SEASONAL TO PANDEMIC PRODUCTION

PRINCIPLES

Precautionary Approach Risk Reduction Minimizing Spread

Minimizing Serious Impact

Transparency

Messaging

Mapping the pandemic vaccine production process

- Draft Operational Framework for Pandemic Vaccine Response who?
- Timeline of pandemic vaccine production when?
- Process for WHO pandemic vaccine response to pandemics how?

Practical considerations

There are threats and bottlenecks in the manufacturing process which can cause a domino effect & affect both seasonal and pandemic vaccine production and availability.

Identification of bottlenecks

Activity	Number of bottlenecks
CVV production/availability	6
Biocontainment for wt pandemic virus and CVV	4
Yield and manufacture of CVVs	4
Clinical trials for the first pandemic vaccine	5
Timing of SRID reagents for vaccine potency test	1
Regulatory harmonization	1
Risk assessment	1
Fill and finish capacity	1

TIMELINE OF PANDEMIC VACCINE PRODUCTION

"The when"

ENTITIES ACTIVITIES		ACTIONS	WEEK NUMBER SINCE WHO RECOMMENDATION OF PANDEMIC VIRUS (genetic sequence upload)																	
FIGURES	Vellalites	ACTIONS	1 2	3	4 5		7	8	9 10	-	_		7.			17 1	_	21	22	23
Reassorting Labs	Reassortant development	Development of CVVs for distribution			$\langle \langle \rangle \rangle$	1														
WHO CCs and Reassorting Labs	Reassortant evaluation	CVVs characterization including safety and shipping					$\widehat{}$		111											
		Biosafety/GMO approval																		
Manufacturers	Reassortant assessment	CVVs Yield and growth characteristics				Г			\approx	4	111									
	Development	Clinical lot production								4	111									
	Clinical trials	Recruitment and Execution								T		$\hat{}$		111						
		Serology											$\hat{}$		111					
		ADRmonitoring																		
	Vaccine Production	Antigen production																		
		Vaccine Formulation/Packaging/Distribution																		
ERLs	Reagents	Preparation of purified HA (for sheep immunisation)																		
		Procuction of reagents											$\hat{}$		11					
		Calibrations and supply of reagents															7			
Regulatory Authorities	Regulation	Strain variation in mock dossier																		
		Emergency use approval					1													
		Registration process																		
	Lot release	SRIC and Endotoxin tests, cold chain review																		
	Pharmacovigilence	AEFI monitoring																		
Program managers	Vaccine Distribution	Vaccine available for deployment																		

BottlenecksCVV production/availability

Dattlanaak	Determended	Calutions
Bottleneck	Data needed	Solutions
Lack of suitable BSL3/GMP	 Review number of suitable 	 Dedicated publically-funded
laboratories for early small	labs available	pilot BSL3/GMP labs
scale work		
Not enough labs producing	 None identified 	 WHO to identify and establish
CVVs especially from highly		more pandemic CVV labs
pathogenic viruses		more paraerme ev v labe
Not enough high containment	 Review number of suitable 	 Dedicated publically-funded
labs for making LAIV CVVs	labs available	pilot BSL3/GMP labs
		pilot 2020/ Citil Idag
Slow decision on CVV status	 Prepare a review of the type 	 WHO to obtain clarification
for Nagoya Protocol or SMTA2	of CVVs to be produced and	
	their use	
Uncertainty about	None identified	 Manufacturers to start
	1 None identified	
manufacturers' obligations to		dialogue with WHO
share synthetic seed viruses		
and shipping requirements		
Delays in shipping	None identified	 Manufacturers to obtain import
		permits (including GMO CVV)
		in advance; obtain
		agreement(s) with courier(s)
World Health		agreement(s) with couner(s)
Organization		

Bottlenecks Yield and manufacturing of CVVs

Bottleneck	Data needed	Solutions
Identification of the type of safety tests needed; availability of wt virus comparator; the need for ferret safety tests	 wt virus risk assessment Criteria for attenuation and biosafety and utility of safety tests 	 WHO to review guidance on safety testing of CVVs
Continued need for chicken pathogenicity tests of CVVs derived from hp viruses	 Historical review of chicken test data Review in vitro test data 	 WHO/WHO CCs request that either USDA remove requirement for chicken pathogenicity test or remove hp influenza viruses from Select Agent status
Slow decision on biosafety and USDA Select Agent status; biosafety status could be country-specific	 Information on pathogenicity Sequence especially HA/NA gene segments and including both egg and cell isolates 	 All CVV labs aiming to work with hp viruses should register with USDA in advance WHO to lead and coordinate biosafety assessment and to speed up assessment WHO to provide feedback on IFPMA 'white paper' on CVV biocontainment Better coordination of CVV labs Better communication between CVV labs and manufacturers CVV labs to standardized lab release documents for CVVs Future use of synthetic HA/NA CVVs
Uncertainty about biosafety status of synthetic CVVs especially with USDA Select Agent status		 Manufacturers to clarify status with human and agricultural safety authorities WHO to coordinate

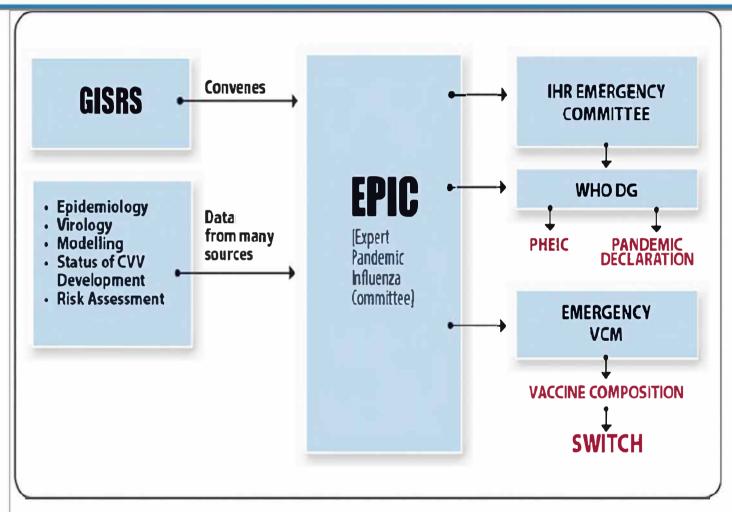
Bottlenecks Clinical trials for the first pandemic vaccines

Bottleneck	Data needed	Solutions
Delay in availability of clinical trial vaccine lots, specifically related to vaccine potency assays		WHO and ERLs to review and recommend alternative potency assays
Delay due to GMO issues	 Certificate of analysis 	 None identified
Delay due to country- specific vaccine lot release	Lot release data	 WHO to coordinate pandemic vaccine lot release globally
Delay in clinical trial protocol review	None identified	 Harmonize clinical trial procedures
Delay in serology assays	 Robustness and reproducibility of assays 	 Improvement, standardization and acceptance of assays

Bottlenecks Timing of SRID reagents for vaccine potency testing

Dattleman	Data a sa dad	O a la d'acce
Bottleneck	Data needed	Solutions
Delays in reagent supply will delay vaccine lot release and vaccine supply World Health Organization	 Availability of antigen and antiserum for use in reagent production Biosafety status of antigen Which CVV is being used? Suitability of existing reagents i.e. are new ones really needed? Is use of heterologous reagents realistic? 	 Reagent supply needs better coordination and harmonization Alternative validated potency tests Early start of antiserum production (before CVV availability) Allow use of heterologous reagent Consider making panel of reagents at risk

Bottlenecks Regulatory harmonization


regulatory marmormzation									
Bottleneck	Data needed	Solutions							
Lack of mutual recognition of regulatory procedures leading to delays in vaccine supply	 Review regulatory requirements in different countries Identify a basic set of criteria for seasonal and pandemic vaccine Prequalification What requirements are there for donated vaccines in an emergency 	 Cross communication between regulatory authorities WHO to introduce Prequalification for seasonal and pandemic influenza vaccines Continue to support regional regulatory harmonization in low and middle income 							
	 Do country NRAs meet published criteria for functionality Robustness of pandemic vaccine capability in countries Review of data on vaccine effectiveness Explore labelling requirements for emergency use of 	 countries Establish or strengthen NRA's: Regulatory systems Marketing Authorization Agreement on criteria for assessment of vaccine effectiveness Harmonization of labels and 							
World Health Organization	 pandemic vaccine Review pandemic vaccine lot release requirement in different countries 	package inserts for pandemic vaccinesHarmonization of pandemic vaccine lot release							

Principles to guide Decision Making

- Any decision will be made on incomplete data.
 - Amount and quality of later data likely to be different
- If no switch is recommended, need flexibility to review the recommendation as new data arises,
- The declaration of a pandemic does not automatically trigger a switch to pandemic vaccine production
 - Time of year, geography, severity of pandemic and seasonal infections, availability of CVVs all affect decision
- The WHO recommendation should maximise global health and be guided by expert opinion

Process for WHO pandemic vaccine response – "The How"

The Role of EPIC in declaration of a PHEIC and a Pandemic and in initiating vaccine switch

Key messages – Switch meetings

- Recommendation of the formation of an Expert Pandemic Influenza Committee (EPIC), which would provide advice to WHO decision makers.
- A set of principles for EPIC to follow to ensure a clear, transparent and integrated approach to the process of declaring a PHEIC or pandemic.
- Proposal of a process to activate the vaccine Switch by means of a WHO Emergency Vaccine Composition Meeting (VCM). The Emergency VCM would recommend the composition of a pandemic vaccine, which would in turn activate and globally harmonize the Switch process.
- Suggestions for solutions to the technical bottlenecks that would interfere with making a timely Switch and making pandemic vaccine available quickly.
 - leading entities to work on solutions, including creation of Implementation Groups
 - Suggestion that many of the technical bottlenecks could be solved by use of a publicly funded, small-scale GMP pilot lot vaccine production facility
- The perspective of Low and Middle Income countries was included in the outcome of the Consultation.

Key messages – Switch meetings

- Recommendation to explore the feasibility of establishing a publicly funded small scale GMP pilot lot vaccine production facility.
- The facility could be used in the early stages of pandemic vaccine development by assessing CVV yield; assessing biosafety; producing pilot lots of vaccine for evaluation of process yield and for clinical evaluation; supplying antigen for potency reagents; and establishing diagnostic capacity.

Working Group Meeting on the Revision of the WHO TRS941 May 9 -10 2017

2007 The TRS 941

- The TRS 941 document is critical guidance to CVV and GISRS laboratories, national regulators and all manufacturers, as well as other international organizations such as the OIE, national agencies.
- There is a need to keep the TRS 941 guidance up to date.

2009

- Manufacturers' were delayed in starting vaccine manufacturing for H1N1pdm09 vaccine until the biocontainment level was determined by WHO
- Concerns developed that vaccine will again be delayed if another pandemic virus emerges soon.
- These issues have led manufacturers and regulators to seek revision, clarification and updating of the current TRS 941 document.
- Ideally there would also be regulatory harmonisation and agreement on BSL level according to risk assessment criteria so that any delay in manufacturing would be avoided.

2012 IFPMA 'White Paper'

- IFPMA produced a detailed 'white paper' in 2012
- Biocontainment Requirements for Influenza Vaccine Manufacturing Facilities
- Details alterations to the TRS 941 from a manufacturing perspective.
- A key issue in this document is the call to allow manufacturers to proceed with pandemic vaccine production prior to completion of safety testing during a pandemic alert period, provided agreed BSL safety conditions can be met.



Global Action Plan (GAP) for Influenza Vaccines (2006-2016)

Concerning situation in 2006: Small production capacity & concentrated in a few HICs

10 year strategy to reduce anticipated global shortage & inequitable access to vaccines in the event of an influenza pandemic

Goal: Capacity to produce enough vaccine to immunize 70% of the global population with 2 doses of vaccine = ~10 billion doses

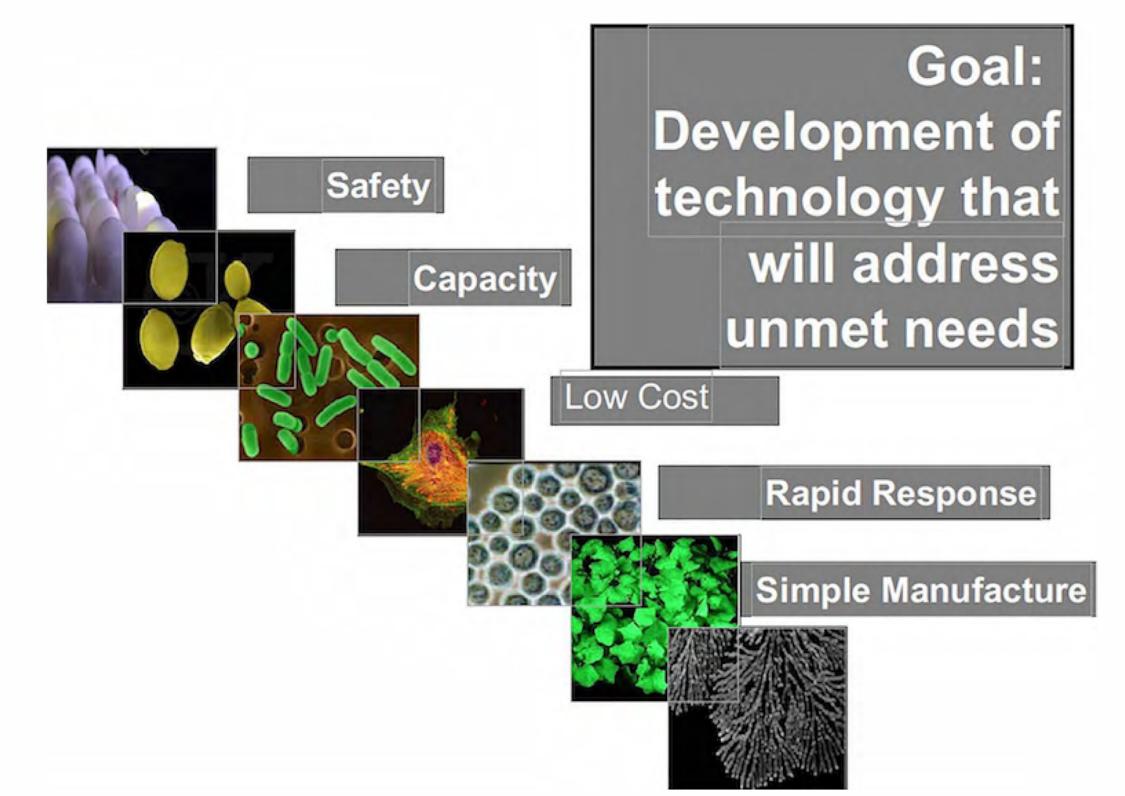
Progress Toward GAP Goal

Situation in 2006

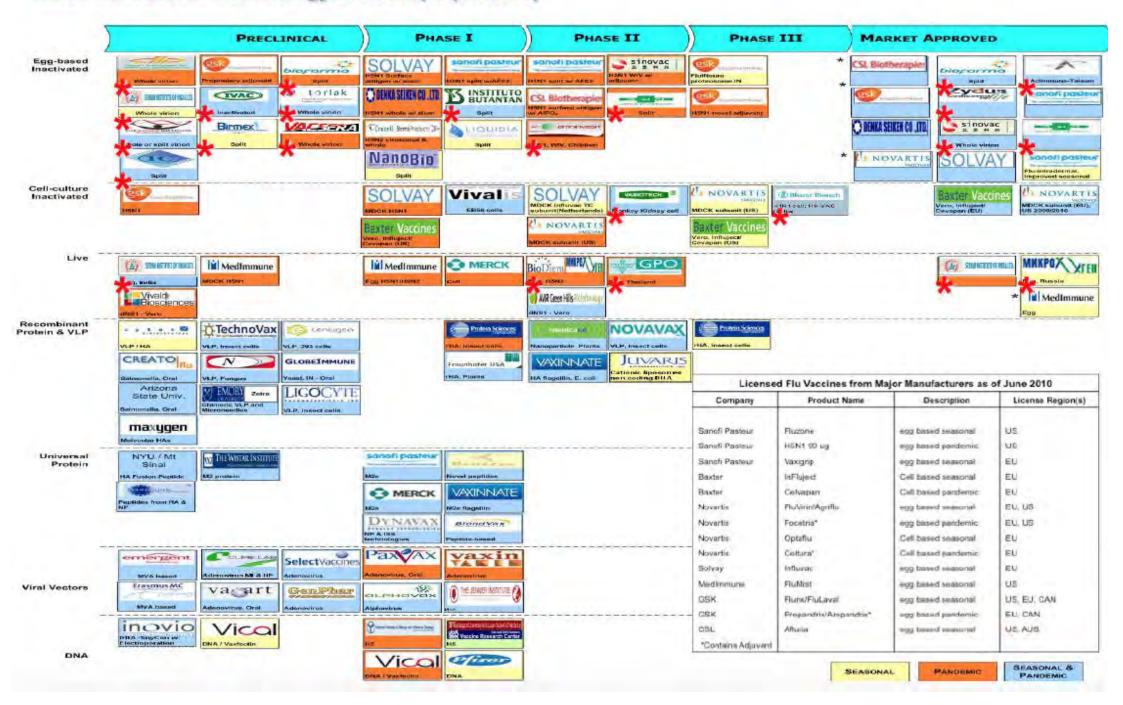
- Enough capacity to produce 1.5 billion doses of pandemic vaccine
- Production was based entirely in HICs

Situation today

- Enough capacity to produce 6.4 billion doses of pandemic vaccine
- Production has expanded to include LMICs
- But, still falls short of global needs (10 billion doses)
 & challenges to maintaining this capacity


GAP progress under Objective 3Promote R&D of influenza vaccines

- Some novel vaccines licensed, but overall little R&D progress
 - Recombinant baculovirus (Flublok), LAIV,
 Quadrivalent, adjuvanted seasonal (infants); high dose ID (elderly)
- Still far from a "universal" flu vaccine
- WHO has published 'Preferred Product Characteristics (PPC) for Next Generation Influenza Vaccines'



Review of Production Technologies

- Changing landscape technology
- Only way to ensure long term aim of vaccine availability for all
 - ie a variety of Tech needed at this stage
 - Need for new high performance Platform Technologies
- Current Technology (Eggs and cell culture)
 - Long established (safe) production processes
 - Suffer from unpredictable yields and growth properties
 - Poorly responsive to surge capacity for a pandemic outbreak

Influenza Vaccine Technology Landscape (05/2015)

The Nagoya Protocol

WHO Switch 3 Meeting

June 7-9th 2017

https://www.cbd.int/abs/

What is it?

- International agreement which aimed at sharing the benefits arising from the utilization of genetic resources in a fair and equitable way
 - Flows from the Convention for Biological Diversity (1992) (150 signatories)
- Key elements are
 - Access: rules and procedures covering provision of access to resources by owner
 - Benefit Sharing: rules and procedures covering utilization of resources by user
 - Compliance: obligation to monitor and enforce
 - Due diligence requirements for users to ensure materials have been properly sourced
 - Key checkpoints identified for scrutiny (e.g. sale of a product)
- Came into force in Oct 2014
 - 99 countries (parties) have now ratified the Nagoya protocol
 - Notable exceptions: US, China

To whom does it apply?

 All organisations, individuals, commercial, not for profit, academic operating in countries who have signed the Nagoya Protocol

Why is it a problem for GISRS?

- Pathogens have been considered as 'in scope' of Nagoya
 - EU interpretation is very clear
 - Other countries likely to adopt same interpretation
- Implications
 - Access to materials could be restricted by provider countries
- System depends on constant extremely rapid transfer of materials around the world
 - 143 NICS, 6 CCs, 4 ERLs, many vaccine manufacturers
- So little knowledge/understanding of Nagoya that finding a national focal point a challenge

World Health

Potential Consequences

 Range of materials available for analysis and utilisation for vaccine production may be restricted

Likely that supply of materials from NICs will carry on, but..

- Labs in Nagoya countries will be technically breaking national laws
- Manufacturers in Nagoya Countries won't want to use materials for which Nagoya obligations have not been met
 - Key checkpoint when products sold

What can be done?

For pandemic materials

Formally recognise PIP as an international instrument (EU lead)

For seasonal materials

- Favourable interpretation of Nagoya
 - Pathogens excluded from national legislation
 - Use sequence information only for building vaccine candidates

Acknowledgements

Switch Meetings:

- John Wood, Otfried Kistner, Nancy Cox, Bram Palache, Derek Ellis, Stephen Ingliss (consultants)
- Bruce Gellin and Jacki Katz (Switch Meeting Chairs)
- Biocontainment meeting (TRS941)
 - Jerry weir, Othmar Engelhardt, Tiequn Zhou
- GAP
 - Martin Friede, Erin Sparrow, Guido Torelli
- WHO staff from
 - IVB/IVR, Health Systems and Innovation, EMP, GIP
- Rick Bright and BARDA colleagues

